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Abstract

In this work we consider the stability of localized structures in discrete nonlinear
Schrödinger lattices with generalized nonlinearities, depending on the absolute
value of the field. We illustrate how the continuation of solutions in one-,
as well as higher dimensions proceeds from the anti-continuum limit and show
how to generalize the results of Pelinovsky et al (2005 Physica D 212 1)
for arbitrary nonlinearities. As a case example of particular experimental
relevance, we showcase our main findings in the special setting of the lattice
with the saturable (photorefractive) nonlinearity in one and two dimensions.
Our analytical results are found to be in good agreement with direct numerical
computations.

PACS number: 05.45.Yv
Mathematics Subject Classification: 34K20, 37K60, 47B39

1. Introduction

Over the past decade, dynamical lattice problems, especially of Hamiltonian dispersive type
have become relevant for a diverse host of applications from different areas of physics. One of
the principal areas that have led to numerous insights has been the nonlinear optics of fabricated
AlGaAs waveguide arrays [1]. In that setting, the interplay of discreteness and nonlinearity
led to the emergence of many interesting phenomena including, for instance, Peierls–Nabarro
potential barriers, diffraction and diffraction management [2], gap solitons [3] and so on (see
also the reviews [5, 6] and references therein). Perhaps, the most prototypical mathematical
model used in the description of such waveguide arrays is the discrete nonlinear Schrödinger
(DNLS) equation [11].

A more recent development in the area of nonlinear optics that has been a focal point for
theoretical, computational and experimental developments has been the proposal and creation
of optically induced photonic lattices in photorefractive crystals such as strontium barium

1751-8113/09/025207+13$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/2/025207
http://stacks.iop.org/JPhysA/42/025207


J. Phys. A: Math. Theor. 42 (2009) 025207 V M Rothos et al

niobate (SBN). After the original theoretical proposition of these lattices [12], experimental
realizations soon followed [13, 14], paving the way for the observation of an array of exciting
nonlinear wave phenomena in such crystals. One can mention, among many others, the
formation of patterns such as dipole [15], quadrupole [16] and necklace [17] solitary waves,
impurity modes [18], discrete vortices [19, 20], rotary waves [21], higher order Bloch
modes [22] and gap vortices [23], two-dimensional (2D) Bloch oscillations and Landau–
Zener tunneling [24], the formation of coherent structures in honeycomb [25], hexagonal
[26] and quasi-crystalline lattices [27], and most recently the study of Anderson localization
in disordered photonic lattices [28]. An interesting deviation of this class of photorefractive
problems from the standard DNLS setting is that the nonlinearity does not have the regular cubic
form, representing the Kerr effect, but rather has a saturable functional form, representative
of the photorefractive nonlinearity. This feature will be of importance in our considerations
below.

Finally, yet another physical realization of such lattices emerged in recent years in atomic
physics through the examination of Bose–Einstein condensates (BECs) trapped in periodic
potentials. There, again, a reduction can be formulated which is obtained as an effective
description of the mean-field model of the so-called Gross–Pitaevskii equation with a periodic
potential. This leads once again to a genuinely discrete nonlinear Schrödinger equation [7].

The above physical realizations have prompted an extensive examination of the coherent
structures that emerge in the prototypical dispersive nonlinear lattice dynamical model, namely
the DNLS equation; see, e.g., [8–10] for one-, two- and three-dimensional installments of
the model, as well as references therein. However, there is a considerably smaller volume
of such results for non-cubic nonlinearities, such as for instance the saturable nonlinearity
of the photorefractive media, or the cubic–quintic nonlinearity. Recently, the existence of
intrinsic localized modes in DNLS with saturable nonlinearity has been proved rigorously
using the Nehari manifolds approach and a mountain pass argument [4]. The saturable case
has been examined predominantly due to some of its interesting stability properties (such as
the exchange of stability between the on-site and the inter-site solitary wave modes) [30, 31]
and the related possibility for potentially enhanced mobility of localized lattice excitations
[31]. The cubic-quintic case has been studied due to a larger variety of localized modes that
it can offer and its richer bifurcation structure [32, 33].

In the present work, our aim is to present a theory for the localized excitations in the
vicinity of the anti-continuum limit (where the sites are decoupled from each other) in the
case of generalized DNLS models, where the nonlinearity is an arbitrary function of the field
modulus. This situation encompasses, as case examples, the photorefractive nonlinearity (in
which we test these predictions in detail), as well as the cubic–quintic case, and generalizes
in a natural way the earlier results of [8, 9].

This paper is structured as follows. In section 2, we present the mathematical formulation
of the problem and the theoretical results of linear stability analysis. In section 3, we present
numerical results for the existence and linear stability of discrete breathers (in the 1D setting)
and vortices (in the 2D setting) of the DNLS equation with saturable nonlinearity. Finally,
section 4 presents our conclusions.

2. Mathematical analysis

2.1. Formulation of the problem

We start by considering the generalized DNLS equation of the form:

iu̇n + F(|un|2)(un+1 + un−1) + f (un, ūn) = 0, n ∈ Z, t ∈ R. (2.1)
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The nonlinear functions F, f will be assumed to be polynomial functions of their arguments
with real coefficients. In addition, it is useful to take F(ρ) > 0 for all ρ > 0 and
f = g(|un|2)un. There are several choices one can make for the functions F, g such that the
system (2.1) has the NLS-type equation as a continuum limit:

(a) F(ρ) = ε and g(ρ) = −2ε + a1ρ, g(ρ) = −2ε + a1/(1 + ρ), g(ρ) = −2ε + a1ρ − ρ2.
These correspond to the cubic DNLS, saturable DNLS and cubic–quintic DNLS models,
respectively, discussed in the introduction.

(b) F(ρ) = ε + a1ρ/3 and g(ρ) = −2ε + a1ρ/3. This corresponds to the so-called Salerno
model [34]; see also [35] for some recent considerations regarding this model.

(c) F(ρ) = ε + a1ρ/2 and g = −2ε. This corresponds to the Ablowitz–Ladik model which
is the integrable counterpart of the DNLS equation [29].

In the following sections, as per the discussion in the introduction, we focus on case A, where
ε > 0 and a1 = 1 (focusing case). It should be noted that the results can be straightforwardly
translated to the defocusing case of ε < 0 through the, so-called, staggering transformation
ũn = (−1)nun.

Let

l2 =
⎧⎨
⎩u = {un}n∈Z, un ∈ C, ‖u‖ =

(∑
n∈Z

|u|2
)1/2

⎫⎬
⎭

with the real scalar product

〈φ,ψ〉l2 = Re
∑

n

φnψ̄n, ψ,ψ ∈ l2.

Considering the discrete Laplacian operator we observe that for any φ ∈ l2:

‖�φ‖2
l2 � 4‖φ‖2

l2 .

We rewrite the equation in the form

iu̇n + ε�un + f (un, ūn) = 0 (2.2)

and �un := un+1 − 2un + un−1.
The discrete breathers of (2.2) are given by

un(t) = φn ei(μ−2ε)t+iθ0 , μ ∈ R, φn ∈ C, n ∈ Z, (2.3)

where θ0 ∈ R is a parameter and (μ, φn) solve the difference equation on n ∈ Z:

(μ − g(|φn|2))φn = ε(φn+1 + φn−1). (2.4)

Proposition 1. Choosing μ = μ∗, where μ∗ = 1 for the cubic DNLS and μ∗ = 1/2 for the
saturable DNLS, there exist ε0 > 0, κ > 0, φ∞ > 0 such that the difference equation (2.4)
has a continuous family of intrinsic localized modes near the anti-continuum limit of ε = 0,
with the properties:

(i)

lim
ε→0+

φn = φ(0)
n =

{
eiθn , n ∈ S

0, n ∈ Z\S
(2.5)

(ii)

lim
|n|→∞

eκ|n|φn = φ∞, φn ∈ R, n ∈ Z, (2.6)

where S is a finite set of nodes of the lattice n ∈ Z and θn = {0, π}, n ∈ S.

3
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The difference equations can be rewritten as

(μ∗ − g(|φn|2))φn = ε(φn+1 + φn−1). (2.7)

For the solution of the equation, given the analyticity of the vector field equations on ε, one
can use the perturbative expansion

φn = φ(0)
n +

∞∑
k=1

εkφ(k)
n , (2.8)

φ(0)
n is given by (2.5). Following Pelinovsky et al [8] we have:

Lemma 1. There exists 0 < ε1 < ε0 such that the number of changes in the sign of φn on
n ∈ Z for 0 < ε < ε1 is equal to the number of π -differences of the adjacent θn, n ∈ S, in the
limiting solution (2.5).

By proposition 1 and lemma 1, all families of the discrete breathers as ε → 0 can be
classified by a sequence of {0}, {+} and {−} of the limiting solution (2.5) on the finite set S.
In particular, we consider two ordered sets S:

S1 = {1, 2, 3, . . . , N} (2.9)

and

S2 = {1, 3, 5, . . . , 2N − 1}, (2.10)

where dim(S1) = dim(S2) = N < ∞. The set S1 includes the, so-called, Page mode
(N = 2, θ1 = θ2 = 0) and the twisted mode (N = 2, θ1 = 0, θ2 = π). The set S2 includes
the Page and twisted modes (N = 2), separated by an empty node.

2.2. Stability of discrete breathers

The spectral stability of discrete breathers for DNLS with saturable nonlinearity is studied
through the linearization

un(t) = ei(μ∗−2ε)t+iθ0(φn + an eλt + b̄n eλ̄t ), (2.11)

where λ ∈ C, (an, bn) ∈ C
2 solve the linear problem on n ∈ Z,(

μ∗ − ∂f

∂un

)
an − ∂f

∂ūn

bn − ε(an+1 + an−1) = iλan

− ∂̄f

∂ūn

an +

(
μ∗ − ∂̄f

∂un

)
bn − ε(bn+1 + bn−1) = − iλbn.

(2.12)

Focusing on real profiles φn and substituting an = un + iwn, bn = un − iwn the stability
problem (2.12) is transformed to(

μ∗ −
(

∂f

∂vn

+
∂f

∂v̄n

))
vn − ε(vn+1 + vn−1) = −λwn(

μ∗ −
(

∂f

∂vn

− ∂f

∂v̄n

))
wn − ε(wn+1 + wn−1) = λvn.

(2.13)

The matrix–vector form of the problem (2.13) is

L+v = −λw, L−w = λv (2.14)
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where if we use f (un, ūn) = g(|un|2)un

(L+)n,n = μ∗ −
[(

∂g

∂un

+
∂g

∂ūn

)
un + g

]
,

(L−)n,n = μ∗ −
[(

∂g

∂un

− ∂g

∂ūn

)
un + g

]
,

(L±)n,n+1 = (L±)n+1,n = −ε

(2.15)

Equivalently, the stability problem is rewritten in the Hamiltonian form

JHψ = λψ, (2.16)

where ψ is the infinite-dimensional eigenvector that consists of 2-blocks of (vn, wn)
T ,J is

the infinite-dimensional skew-symmetric matrix that consists of 2 × 2 blocks of

Jn,m =
(

0 1
−1 0

)
δn,m

and H is the infinite-dimensional symmetric matrix that consists of 2 × 2 blocks of

H =
(

(L+)n,m 0
0 (L−)n,m

)
.

Due to (2.8), the matrix H is expanded into the power series

H = H(0) +
∞∑

k=1

εkH(k) (2.17)

where H(0) is diagonal with the block elements:

H(0)
n,n =

(
(L+)n,n|φ(0)

n
0

0 (L−)n,n|φ(0)
n

)
n ∈ S,

H(0)
n,n =

(
μ∗ 0
0 μ∗

)
, n ∈ Z\S.

(2.18)

Let N = dim(S) < ∞. For ε = 0, the spectrum of H(0)ϕ = γ ϕ has exactly N eigenvalues

γ = (L+)n,n|φ(0)
n

,

N zero eigenvalues γ = 0 and infinitely many eigenvalues γ = μ∗ − g(0). The eigenvalues

γ = (L+)n,n|φ(0)
n

and γ = 0

map to N double zero eigenvalues λ = 0 in the eigenvalue problem JH(0)ψ = λψ .
The remaining infinitely many eigenvalues map to the infinitely many eigenvalue pairs
λ = ±i(μ∗ − g(0)) for the full problem.

We can prove the following lemma:

Lemma 2. Assume that φn, n ∈ Z is the discrete breather, described in proposition 1. Let
N = dim(S) < ∞. Let γj , 1 � j � N, be small eigenvalues of H as ε → 0 such that

lim
ε→0

γj = 0, 1 � j � N. (2.19)

There exists 0 < ε∗ � ε0 such that the eigenvalue problem (2.16) with φn, n ∈ Z and
0 < ε∗ � ε0 has N pairs of small eigenvalues ±λj , 1 � j � N , that satisfy the leading-order
behavior

lim
ε→0

λ2
j

γj

= −(L+)n,n|φ(0)
n

, 1 � j � N. (2.20)
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For the saturable DNLS with μ∗ = 1/2,H(0) is diagonal with two blocks:

H(0)
n,n =

(−1/2 0
0 0

)
, n ∈ S, H(0)

n,n =
(−1/2 0

0 −1/2

)
, n ∈ Z\S. (2.21)

Let N = dim(S) < ∞. The spectrum of H(0)ϕ = γ ϕ has N zero eigenvalues and
infinitely many eigenvalues γ = −1/2. Among these the N zero eigenvalues, along with
N of the −1/2 eigenvalues map to N double zero eigenvalues of the full problem, while the
remaining infinite eigenvalues of −1/2 map to the eigenvalues λ = ±i/2.

For the models of type A considered herein, the calculation of the small eigenvalues γj

proceeds in a similar way as in [8] and is provided by a reduced eigenvalue problem

Mj c = γj c, (2.22)

where c = (c1, . . . , cN)	 is the corresponding eigenvector and Mj a tri-diagonal N × N

matrix, given by equation:

(Mj )n,n = (cos(θn+1 − θn) + cos(θn−1 − θn)), 1 < n < N

(Mj )n,n+1 = (Mj )n+1,n = −cos(θn+1 − θn), 1 < n < N (2.23)

(Mj )1,1 = cos(θ2 − θ1), (Mj )N,N = cos(θN − θN−1).

It can be shown by a calculation analogous to that of [8] that in the case of the nearest-neighbor
excited sites of the set S1, the relevant order of emergence of the small eigenvalues is j = 1
and the full problem eigenvalues are λ = √

ελ1, while if the sites are next-nearest neighbor
as in S2, then the relevant order is j = 2, and the eigenvalues are λ = ελ2. We now test these
predictions by means of direct numerical bifurcation computations.

3. Numerical stability analysis

3.1. Discrete breathers in the 1D saturable model

In this section, as a prototypical example of a non-cubic nonlinearity (as well as one which is of
fundamental interest in its own right due to its connection with the properties of photorefractive
media), we present a numerical analysis of the existence and linear stability results associated
with the DNLS equation with saturable nonlinearity. We examine the stability with two
examples of the discrete breathers in the set S1: N = 2 and N = 3. In the case N = 2
the discrete two-pulse breathers consist of the in-phase mode (a) and the, so-called, twisted
[36, 37] or out-of-phase mode (b) as follows:

(a) θ1 = θ2 = 0
(3.1)

(b) θ1 = 0, θ2 = π.

The eigenvalues of matrix M1 are given explicitly as γ1 = 0 and γ2 = 2 cos(θ2 − θ1).
Therefore, the in-phase mode (a) has one unstable eigenvalue λ ≈ √

ε in the stability problem
(2.16) for small ε > 0, while the twisted mode (b) has no unstable eigenmodes but rather only
a simple pair of purely imaginary eigenvalues λ ≈ ±i

√
ε with the so-called negative Krein

signature; see [8] for a definition of the Krein signature and a proof of its negativity which holds
true also in the present context. These results are illustrated in figures 1 and 2 in agreement
with the numerical computations of the full linearization equations (2.7) and (2.12). Figure 1
shows the in-phase mode, while figure 2 corresponds to the twisted mode. The top subplots
of each figure illustrate the mode profile (left) and the spectral plane λ = λr + iλi of the linear
eigenvalue problem (right) for ε = 0.1. The bottom subplot indicates the corresponding real
(for the in-phase mode) and imaginary (for the twisted mode) eigenvalues from the theory
(dashed line) versus the full numerical result (solid line). We found that the agreement between
the theory and the numerical computation is within 5% for ε < 0.0665 in the in-phase case
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Figure 1. The top left panel shows the spatial profile of two in-phase excited sites while the top
right panel shows the corresponding spectral plane of the linear stability problem for ε = 0.1. The
bottom panel shows the theoretically (dashed line) and the numerically (solid line) evaluated real
positive eigenvalue, from ε = 0 to ε = 0.1.
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Figure 2. Same as figure 1 but now for the twisted mode with two out-of-phase excited sites.

(figure 1), while for the twisted mode (figure 2) it is less than 1.5% for all the values of ε in the
interval (0, 0.1). As may naturally be anticipated, for larger values of ε the difference between
the theory and the numerics grows since higher order terms of the perturbative expansion for
the eigenvalues come into play. In the case N = 3, the discrete three-pulse breathers consist
of three principal modes as follows:

(a) θ1 = θ2 = θ3 = 0

(b) θ1 = θ2 = 0, θ3 = π (3.2)

(c) θ1 = 0, θ2 = π, θ3 = 0.

The eigenvalues of matrix M1 are given explicitly as γ1 = 0 and

γ2,3 = cos(θ2 − θ1) + cos(θ3 − θ2)

±
√

cos2(θ2 − θ1) − cos(θ2 − θ1) cos(θ3 − θ2) + cos2(θ3 − θ2).
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Figure 3. Same as figure 1 but for three excited sites in phase. In the top panels the spatial profile
and the corresponding spectral plane of the linear stability problem are shown for ε = 0.06.

The mode (a) has two real unstable eigenvalues λ ≈ √
3ε/2 and λ ≈ √

ε/2 in the stability

problem (2.16). The mode (b) has one real unstable eigenvalue λ ≈
√√

3ε/2 and a simple pair

of purely imaginary eigenvalues λ ≈ ±i
√√

3ε/2 with negative Krein signature. The mode

(c) has no unstable eigenvalues but two pairs of purely imaginary eigenvalues λ ≈ ±i
√

3ε/2
and λ ≈ ±i

√
ε/2 with negative Krein signature. Figures 3–5 summarize the results of the

three modes (a)–(c), given in (3.2). Figure 3 corresponds to the in-phase mode (a), where
two real positive eigenvalues give rise to the instability for any ε �= 0. The error between
the theoretical and numerical results is within 5% for ε < 0.0524 for one real eigenvalue
while for the other it is smaller than 3.5% for every ε in the interval (0, 0.06). Similar results
are observed in figure 4 for the mode (b), where the real positive eigenvalue and a pair of
imaginary eigenvalues with negative Krein signature are generated for ε > 0. Finally, figure 5
shows the mode (c), where two pairs of imaginary eigenvalues with negative Krein signature
exist for positive ε. In both cases of the modes (b) and (c), the error between the theoretical
and numerical results is within 5% for every value of ε in the interval [0, 0.1].

It is interesting to compare the results from the above analysis with the equivalent from
the case of cubic nonlinearity [8]. It is straightforward to establish that since the eigenvalues
γj in all considered cases are identical between the cubic and saturable models, and since

(L+)n,n

∣∣(cubic)

φ
(0)
n

= 4(L+)n,n

∣∣(saturable)

φ
(0)
n

, the relevant eigenvalues of the cubic case will be a factor
of 2 larger than their corresponding saturable counterparts (for the values of μ in the two
models considered herein which yield the same excited mode intensities). This implies the
following: for a given ε, structures that are unstable due to the existence of real eigenvalues
will be less unstable in the saturable model than their analogues in the cubic model. On the
other hand, structures with imaginary eigenvalues of negative Krein signature in the saturable
model possess a wider (in ε) stability interval than pertinent ones in the cubic model. These
results illustrate the advantages of constructing waveguide arrays in media with photorefractive
or photovoltaic nonlinearities instead of Kerr ones; similar conclusions have been drawn, in
fact, for dark solitons in the defocusing case in connection with experiments (see, e.g., [38]
and references therein).
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Figure 4. Same as figure 1 but for three excited sites where the left and the middle sites are in
phase and the right is out of phase. The top panels are for ε = 0.1.
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Figure 5. Same as figure 4 but for three excited sites where adjacent sites are out of phase with
each other.

3.2. Discrete vortices in the 2D saturable model

We now turn to the case of the model with the saturable nonlinearity in two spatial dimensions
[11], which we also briefly consider to illustrate the generality of our results above.

iu̇n,m + ε(un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m) +
un,m

1 + |un,m|2 = 0, (3.3)

where un,m(t):R+ → C, (n,m) ∈ Z
2, and ε > 0 is the inverse squared step size of the lattice.

The discrete NLS conserves the (squared) l2 norm which corresponds to the, so-called, optical
power:

Q =
∑

(n,m)∈Z
2

|un,m|2. (3.4)

9
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The conservation of power is related to the invariance of the discrete NLS (3.3) with
respect to the gauge transformation:

un,m(t) → un,m(t) eiθ0 , ∀ θ0 ∈ R. (3.5)

The time periodic localized modes of the two-dimensional discrete NLS equation take the
form

un,m(t) = φn,m ei(μ−4ε)t+iθ0 , φn,m ∈ C (3.6)

where θ0 ∈ R and μ ∈ R are parameters. The localized modes in the focusing discrete NLS
with ε > 0 exist only for μ > 4ε [39]. The parameter μ > 0 can be set as μ = 1/2 and the
complex-valued φn,m solve the nonlinear difference equations on (n,m) ∈ Z

2:(
1

2
− 1

1 + |φn,m|2
)

φn,m = ε(φn+1,m + φn−1,m + φn,m+1 + φn,m−1). (3.7)

If ε = 0, the localized modes of the equation (3.7) are given by the following limiting
solution:

φ(0)
n,m =

{
eiθn,m , (n,m) ∈ S

0, (n,m) ∈ Z
2\S

}
(3.8)

where S is a finite set of nodes of the lattice (n,m) ∈ Z
2 and θn,m is the parameter for

(n,m) ∈ S. The value of θ0 is arbitrary in the ansatz (3.6), so we can set θn0,m0 = 0 for the
node (n0,m0) ∈ S. This convention allows us to precisely define a special type of localized
mode, the vortex, which can be given as follows [9]. If S is a simple closed discrete contour
on the plane (n,m) ∈ Z

2, the localized solution of the differential equations (3.7) with ε > 0,
which has complex-valued φn,m and satisfies the limit (3.8) with θn,m ∈ [0, 2π ], (n,m) ∈ S,
is called a discrete vortex. Additionally, each node (n,m) ∈ S has exactly two adjacent nodes
in the vertical or horizontal directions along S. �θj is the phase difference between two
adjacent nodes in S, with j = 1, 2, . . . , dim(S) and |�θj | � π . If the phase differences �θj

are constant along S, the discrete vortex is called symmetric and if not, asymmetric. The
total number of 2π phase shifts across the closed contour S is called the vortex charge. If
|�θj | ∈ {0, π}, then the solution is called a discrete breather, while if it does not belong to
this set, then the solution is called a (genuine) discrete vortex. We consider the square discrete
contour S = SM :

SM = {(1, 1), . . . , (M + 1, 1), (M + 1, 2), . . . ,

(M + 1,M + 1), (M,M + 1), . . . , (1,M + 1), . . . , (1, 2)} (3.9)

and the dimension of SM is 4M . As mentioned above, the contour SM for fixed M can support
symmetric and asymmetric vortices with charge L. The simplest vortex is symmetric with
charge one (M = 1, L = 1) [40, 41]. To showcase a prototypical example of the generality
of our approach developed above, in this work we will investigate the stability of symmetric
vortices [9] where their charge, L, is not equal to the size of the contour M4. The particular
case of interest that we will study is one of the cases of most physical interest, i.e. with M = 2
and L = 3; this case is quite relevant for the contour with M = 2 since it is the lowest
charge for which the configuration is stable near the anti-continuum limit [9]. The contour
SM for M = 2 is shown in figure 6. The values of θi,j with i, j = 1, 2, 3 are θ1,1 = 0, θ2,1 =
3π/4, θ3,1 = 3π/2, θ3,2 = 9π/4, θ3,3 = 3π, θ2,3 = 15π/4, θ1,3 = 9π/2, θ1,2 = 21π/4.

The spectral stability of the discrete vortices (3.6) with μ = 1/2 and θ0 = 0 is studied,
similarly to the case of the 1D DNLS equation (since the closed contour considered corresponds

4 For the case of L = M , higher order reductions need to be developed similarly to [9].
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Figure 6. Example of close square contour SM for M = 2.

effectively to a 1D configuration with periodic boundary conditions). The linearization around
such structures reads:

un,m(t) = ei(1/2−4ε)t+iθ0(φn,m + an,m eλt + b̄n,m eλ̄t ), (3.10)

where λ ∈ C and (an, bn) ∈ C
2. For the cases of non-super-symmetric vortices, i.e., L �= M ,

the method developed above for the 1D DNLS case based on the leading-order expansions
generalizes to 2D settings on appropriate contours [9]. For the example of interest in this
case of the charge L = 3 vortex for the 8-site contour with M = 2, where the relative phase
between adjacent sites is 3π/4 we can again use the Jacobian matrix of equation (2.23). One
can then derive the following eigenvalue predictions:

λ =
√

2ε cos(�θ) sin
(πn

N

)
n = 1, 2, . . . , N, (3.11)

where the number of sites is N = 8 and �θ = 2πL/N = 3π/4. The results from equation
(3.11) are tested in the numerical bifurcation calculations presented in figure 7. The first-order
reductions predict three pairs of double imaginary eigenvalues for n = 1, 2, 3 and n = 5, 6, 7,

λ = ±i

√√
2ε sin

(πn

N

)
, (3.12)

a pair of simple imaginary eigenvalues for n = 4,

λ = ±i

√√
2ε (3.13)

and a double zero eigenvalue for n = 8 (due to the overall phase invariance). The double
non-zero eigenvalues split into the second-order reductions along the imaginary axis (with
negative Krein signature). Nevertheless, the qualitative description of the above formula is, in
fact, correct and the results are even quantitatively accurate for small ε (i.e., for values smaller
than 0.005), in which interval the second-order corrections are weak. In figure 7, we give
both the leading order prediction and the full numerical result for the seven relevant pairs of
eigenvalues. Note once again that the relevant saturable mode eigenvalues are predicted to be
half of their cubic case counterparts. This illustrates once again (for the same mode intensity
and the same coupling) the more stable nature (or wider parametric interval of stability) of the
coherent structures in the former model.
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Figure 7. The vortex cell with L = 3 and M = 2. The left panel shows the profile of the solution
for ε = 0.0354. The subplots show the real (top left), imaginary (top right), modulus (bottom
left) and phase (bottom right) fields. The middle panel shows the spectral plane (λr , λi ) of the
linear eigenvalue problem. The right panel shows the numerically (solid line) and theoretically
(dashed line) evaluated, through the first-order reduction, imaginary eigenvalues versus ε, for
values between ε = 0 and ε = 0.0354.

4. Conclusions

In this work, we considered generalized DNLS models where the nonlinearity is not necessarily
cubic but can assume any form dependent on the field and its complex conjugate. We showed
how to generalize in this case the considerations of [8, 9] and obtain explicit expressions
for the eigenvalues of both one-dimensional configurations and discrete breathers, as well as
two-dimensional configurations and discrete vortices, in the vicinity of the anti-continuous
limit where the sites are uncoupled with each other. The results were shown to be in excellent
qualitative and good quantitative agreement with the full numerical stability results in the case
example of the saturable nonlinearity, relevant to the photorefractive media. A physically
relevant conclusion that we were able to deduce from these considerations was that for
structures of the same intensity and coupling strength, the relevant eigenvalues in the saturable
model are smaller than their counterparts in the cubic model. This suggests that the structures
are either less unstable or have a wider parametric interval of stability in the saturable case, in
comparison with the cubic one.

There are a number of directions along which it would be relevant/interesting to extend the
present considerations. A natural one is the extension of the present findings to either higher-
dimensional configurations (such as three-dimensional ones, analogously to the very recent
work of [10]), or multi-component ones (similarly to [42]). Perhaps a more mathematically
challenging, yet equally interesting direction would be to extend the present considerations
to settings that do not involve only simple linear coupling between nearest neighbors, but
perhaps also include nonlinear variants thereof (similar to the ones present in the Salerno or
Ablowitz-Ladik models). Developing a general theory for the latter would enable a toolbox
that could address any member of the DNLS family which would be a valuable contribution
for present and potential future purposes/applications of such models. Efforts along these
directions are currently in progress and will be reported in future publications.
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[22] Träger D, Fischer R, Neshev D N, Sukhorukov A A, Denz C, Królikowski W and Kivshar Yu S 2006 Optics
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